Multiferroic Core-Shell Nanofibers, Assembly in a Magnetic Field, and Studies on Magneto-Electric Interactions
نویسندگان
چکیده
Ferromagnetic-ferroelectric nanocomposites are of interest for realizing strong strain-mediated coupling between electric and magnetic subsystems due to a high surface area-to-volume ratio. This report is on the synthesis of nickel ferrite (NFO)-barium titanate (BTO) core-shell nanofibers, magnetic field assisted assembly into superstructures, and studies on magneto-electric (ME) interactions. Electrospinning techniques were used to prepare coaxial fibers of 0.5-1.5 micron in diameter. The core-shell structure of annealed fibers was confirmed by electron microscopy and scanning probe microscopy. The fibers were assembled into discs and films in a uniform magnetic field or in a field gradient. Studies on ME coupling in the assembled films and discs were done by magnetic field (H)-induced polarization, magneto-dielectric effects at low frequencies and at 16-24 GHz, and low-frequency ME voltage coefficients (MEVC). We measured ~2-7% change in remnant polarization and in the permittivity for H = 7 kOe, and a MEVC of 0.4 mV/cm Oe at 30 Hz. A model has been developed for low-frequency ME effects in an assembly of fibers and takes into account dipole-dipole interactions between the fibers and fiber discontinuity. Theoretical estimates for the low-frequency MEVC have been compared with the data. These results indicate strong ME coupling in superstructures of the core-shell fibers.
منابع مشابه
Magneto-Electro-Thermo-Mechanical Response of a Multiferroic Doubly-Curved Nano-Shell
Free vibration of a simply-supported magneto-electro-elastic doubly-curved nano-shell is studied based on the first-order shear deformation theory in the presence of the rotary inertia effect. To model the electric and magnetic behaviors of the nano-shell, Gauss’s laws for electrostatics and magneto statics are used. By using Navier’s method, the partial differential equations of motion are red...
متن کاملMagneto-elasto-electroporation (MEEP): In-vitro visualization and numerical characteristics
A magnetically controlled elastically driven electroporation phenomenon, or magneto-elasto-electroporation (MEEP), is discovered while studying the interactions between core-shell magnetoelectric nanoparticles (CSMEN) and biological cells in the presence of an a.c. magnetic field. In this paper we report the effect of MEEP observed via a series of in-vitro experiments using core (CoFe2O4)-shell...
متن کاملSound Wave Propagation in a Multiferroic Thermo Elastic Nano Fiber Under the Influence of Surface Effect and Parametric Excitation
This study investigates that the sound wave propagation of multiferroic thermo elastic Nanofibers under the influence of surface effect and parametric excitation via Timoshenko form of beam equations. The equation of analytical model is obtained for Nanofiber through shear and rotation effect. The solution of the problem is reached through the coupled time harmonic equations in flexural directi...
متن کاملDesign and performance investigation of electrospun PVA nanofibers containing core-shell nanostructures for anticancer drug delivery
Objective: The purpose of this work was design and performance investigation of a nanocarrier based on magnetic nanofibers containing core-shell nanostructuresfor anticancerdrug delivery of daunorubicin (DAN) by measuring their drug release at different pH values. Methods: Fe3O4 nanoparticles and Fe3O4@SiO2core-shell nanostructures were synthesized through coprecipitation and Stöber methodresp...
متن کاملنانومغناطیس
Nanomagnetism is a branch of nanotechnology, which studies the magnetic properties of nanoparticles. Single-domain superparamagnetim, superferromagnetism and superspin glasses are different magnetic states which have been observed in a system of nanoparticles. Each of these magnetic states has unique features which determines the application range of magnetic nanoparticles assembly. Shell of na...
متن کامل